Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 20, 2026
- 
            Energy efficiency has emerged as a key concern for modern processor design, especially when it comes to embedded and mobile devices. It is vital to accurately quantify the power consumption of different micro-architectural components in a CPU. Traditional RTL or gate-level power estimation is too slow for early design-space exploration studies. By contrast, existing architecture-level power models suffer from large inaccuracies. Recently, advanced machine learning techniques have been proposed for accurate power modeling. However, existing approaches still require slow RTL simulations, have large training overheads or have only been demonstrated for fixed-function accelerators and simple in-order cores with predictable behavior. In this work, we present a novel machine learning-based approach for microarchitecture-level power modeling of complex CPUs. Our approach requires only high-level activity traces obtained from microarchitecture simulations. We extract representative features and develop low-complexity learning formulations for different types of CPU-internal structures. Cycle-accurate models at the sub-component level are trained from a small number of gate-level simulations and hierarchically composed to build power models for complete CPUs. We apply our approach to both in-order and out-of-order RISC-V cores. Cross-validation results show that our models predict cycle-by-cycle power consumption to within 3% of a gate-level power estimation on average. In addition, our power model for the Berkeley Out-of-Order (BOOM) core trained on micro-benchmarks can predict the cycle-by-cycle power of real-world applications with less than 3.6% mean absolute error.more » « less
- 
            With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.more » « less
- 
            Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available